List of Publications

(also available on ORCID and University of Dundee – Discovery Research Portal)

  1. Adebayo,O.E., Chatelain, B., Trucu, D., and Eftimie, R. (2025), Deep Learning Approaches for the Classification of Keloid Images in the Context of Malignant and Benign Skin Disorders, Diagnostics, Vol 15 No6, Article 710, pp 1-30, https://doi.org/10.3390/diagnostics15060710
  2. Macarie, A.C., Suveges, S., Okasha, M., Hossain–Ibrahim, K., Steele, J.D., and Trucu, D., (2024), “Post–operative glioblastoma cancer cell distribution in the peritumoural oedema”, Frontiers in Oncology, Vol 14, Article 1447010, pp 1-20, https://doi.org/10.3389/fonc.2024.1447010   
  3. Adebayo, O., Trucu, D., and Eftimie, R., (2024) “Analytical investigation of a non-local mathematical model for normal and abnormal wound healing”, Discrete and Continuous Dynamical Systems – Series  B (DCDS-B), pp 1-28, https://doi.org/10.3934/dcdsb.2024171 
  4. Macarie, A.C., and Trucu, D. (2024), “Multiscale mathematical modelling and simulations of chemo-viro-therapies for cancer”, in Modelling and Computational Approaches for Multi-scale Phenomena in Cancer Research: From Cancer Evolution to Cancer Treatment (Eds. Raluca Eftimie and Dumitru Trucu), pp 149-180, World Scientific, Singapore, https://doi.org/10.1142/q0424  
  5. Hodgkinson, A., and Trucu, D. (2024), “Spatio-Temporal-Structural Approaches in Cancer & Immunity Focussed on Oncolytic Viral Therapies”, in Modelling and Computational Approaches for Multi-scale Phenomena in Cancer Research: From Cancer Evolution to Cancer Treatment (Eds. Raluca Eftimie and Dumitru Trucu), pp. 181-212, World Scientific, Singapore, https://doi.org/10.1142/q0424 
  6. Finlayson, L., McMillan, L., Suveges, S., Steele, D., Eftimie, R., Trucu, D., Brown, C. T. A., Eadie, E., Hossain-Ibrahim, K., and Wood, K. (2024), “Simulating Photodynamic Therapy for the Treatment of Glioblastoma using Monte Carlo Radiative Transport”, Journal of Biomedical Optics Vol 29, No 2, Article 025001, pp 1–24,  https://doi.org/10.1117/1.JBO.29.2.025001
  7. Adebayo, O. E., Urcun, S., Rolin, G., Bordas, S. P. A., Trucu, D., and Eftimie, R. (2023), “Mathematical investigation of normal and abnormal wound healing dynamics: local and non-local models”, Mathematical Biosciences and Engineering, Vol 20, No 9, pp. 17446-17498, https://doi.org/10.3934/mbe.2023776 
  8. Hodgkinson, A., Tursynkozha, A., and Trucu, D. (2023), “Structured dynamics of the cell-cycle at multiple scales”, Frontiers in Applied Mathematics and Statistics, Vol 9, Article 1090753, pp. 1-22, https://doi.org/10.3389/fams.2023.1090753 
  9. Hodgkinson, A., Trucu, D., Lacroix, M., Le Cam, L., and Radulescu, O. (2022) “Computational Model of Heterogeneity in Melanoma: Designing Therapies and Predicting Outcomes”, Frontiers in Oncology, Vol 12, Article 857572, pp. 1–9,   https://doi.org/10.3389/fonc.2022.857572
  10. Moreno-Martos, D., Foley, S., Parcell, B., Trucu, D., and Eftimie, R. (2022) A computational investigation of COVID-19 transmission inside hospital wards and associated costs, Mathematical Biosciences and Engineering, Vol 19, No 7, pp. 6504 – 6522, https://doi.org/10.3934/mbe.2022306 
  11. Alsisi, A., Eftimie, R., and Trucu, D. (2022), “Nonlocal multiscale modelling of tumour-oncolytic viruses interactions within a heterogeneous fibrous/non-fibrous extracellular matrix”, Mathematical Biosciences and Engineering, Vol 19, No 6, pp. 6157-6185, https://doi.org/10.3934/mbe.2022288
  12. Alwuthaynani, M., Eftimie, R., and Trucu, D. (2022), “Inverse problem approaches for mutation laws in heterogeneous tumours with local and nonlocal dynamics”, Mathematical Biosciences and Engineering (26pp), Vol 19, Issue 4, pp. 3720-3747, https://doi.org/10.3934/mbe.2022171
  13. Süveges, S., Eftimie, R., and Trucu, D. (2022), “Re-polarisation of Macrophages Within Collective Tumour Cell Migration: A Multiscale Moving Boundary Approach”, Frontiers in Applied Mathematics and Statistics, Vol 7, Article 799650, pp. 1-27, https://doi.org/10.3389/fams.2021.799650
  14. Süveges, S., Hossain-Ibrahim, K., Steele, D., Eftimie, R., and Trucu, D. (2021), “Mathematical modelling of glioblastomas within the brain: a 3D multi-scale moving-boundary approach”, Mathematics MDPI, Vol 9, No 18, Article 2214,  pp. 1 – 20, https://doi.org/10.3390/math9182214
  15. Alwuthaynani, M. and Trucu, D. (2021), “Inverse reconstruction of cell proliferation laws in cancer invasion modelling”, Mathematics in Applied Sciences and Engineering, Vol 2, No 3, pp. 172-193, https://doi.org/10.5206/mase/13865
  16. Süveges, S., Chamseddine, I., Rejniak, K. A., Eftimie, R., and Trucu, D. (2021), “Collective cell migration in a fibrous environment: a hybrid multi-scale modelling approach”, Frontiers in Applied Mathematics and Statistics, Vol 7, Article 680029, pp. 1 – 19, https://doi.org/10.3389/fams.2021.680029
  17. Alsisi, A., Eftimie, R., and Trucu, D. (2021), Non-local multiscale approach for the impact of go or grow hypothesis on tumour-viruses interactions”, Mathematical Biosciences and Engineering, Vol 18, No 5, pp. 5252 – 5284, https://doi.org/10.3934/mbe.2021267
  18. Almuallem, N. A., Trucu, D., and Eftimie, R. (2021), Oncolytic viral therapies and the delicate balance between virus-macrophage-tumour interactions: a mathematical approach, Mathematical Biosciences and Engineering, Vol 18, No 1, pp. 764 – 799, https://doi.org/10.3934/mbe.2021041
  19. Carraro, T., Wetterauer, S., Ponce Bobadilla, A. V., and Trucu, D. (2021), A level-set approach for a multi-scale cancer invasion model, Mathematics in Applied Sciences and Engineering, Vol 2, No 1, pp. 32-54 https://doi.org/10.5206/mase/11087
  20. Süveges, S., Eftimie, R., and Trucu, D. (2020), “Directionality of macrophages movement in tumour invasion: a multiscale moving boundary approach”, Bulletin of Mathematical Biology, Vol 82, 148, pp. 1–50,  https://doi.org/10.1007/s11538-020-00819-7   
  21. Alsisi, A., Eftimie, R., and Trucu, D. (2020), “Non-local multiscale approaches for tumour-oncolytic virus interactions”, Mathematics in Applied Sciences and Engineering, Vol 1, No 1, pp. 249–273, https://doi.org/10.5206/mase/10773
  22. Shuttleworth, R., and Trucu, D. (2020), “Cell-scale degradation of perituoural extracellular matrix fibre network and its role within tissue-scale cancer invasion”, Bulletin of Mathematical Biology, Vol 82, 65, pp. 1–47, https://doi.org/10.1007/s11538-020-00732-z
  23. Shuttleworth, R., and Trucu, D. (2019), “Multiscale dynamics of a heterotypic cancer cell population within a fibrous extracellular matrix, Journal of Theoretical Biology, Vol 486, 110040, pp. 1 – 22, https://doi.org/10.1016/j.jtbi.2019.110040
  24. Alzahrani, T., Eftimie, R., and Trucu, D. (2019) “Multiscale Moving Boundary Modelling of Cancer Interactions with a Fusogenic Oncolytic Virus: the Impact of Syncytia Dynamics, Mathematical Bioscience, Vol 323, 108296, pp. 1–22, https://doi.org/10.1016/j.mbs.2019.108296.    
  25. Shuttleworth, R., and Trucu, D. (2019), “Multiscale Modelling of Fibres Dynamics and Cell Adhesion within Moving Boundary Cancer Invasion, Bulletin of Mathematical Biology, Vol 81, pp. 2176 – 2219, https://doi.org/10.1007/s11538-019-00598-w 
  26. Hodgkinsona, A., Le Cam, L., Trucu, D., Radulescu, O. (2019), Spatio-Genetic and Phenotypic Modelling Elucidates Resistance and Re-Sensitisation to Treatment in Heterogeneous Melanoma, Journal of Theoretical Biology, Vol 466, pp. 84-105, https://doi.org/10.1016/j.jtbi.2018.11.037
  27. Alzahrani, T., Eftimie, R., and Trucu, D. (2019) “Multiscale Modelling of Cancer Response to Viral Therapy”, Mathematical Biosciences, Vol 310, pp. 76-95, https://doi.org/10.1016/j.mbs.2018.12.018.
  28. Hodgkinson, A., Uzé, G., Radulescu, O., and Trucu, D. (2018), “Signal propagation in sensing and reciprocating cellular systems with spatial and structural heterogeneity”, Bulletin of Mathematical Biology, Vol 80, pp. 1900-1936, DOI:  https://doi.org/10.1007/s11538-018-0439-x 
  29. Shuttleworth, R., and Trucu, D. (2018), “Two-scale Moving Boundary Dynamics of Cancer Invasion: Heterotypic Cell Populations Evolution in Heterogeneous ECM”, in Heterogeneous ECM in “Cell Movement: Modeling and Applications” (Eds. Magdalena Stolarska and Nicoleta Tarfulea), pp 1-26, Birkhauser, Springer Nature Switzerland, https://doi.org/10.1007/978-3-319-96842-1_1
  30. Kim, Y., Kang, H., Powathil, G., Kim, H., Trucu, D., Lee, W., Lawler, S., and Chaplain, M. A. J. (2018), “Role of extracellular matrix and microenvironment in regulation of tumor growth and LAR-mediated invasion in glioblastoma”, PLOS ONE, Vol 13, No 10, (40pp), e0204865, https://doi.org/10.1371/journal.pone.0204865
  31. Hodgkinson, A., Chaplain, M. A. J., Domschke, P., and Trucu, D. (2018), Computational Approaches and Analysis for a Spatio-Structural-Temporal Invasive Carcinoma Model, Bulletin of Mathematical Biology, Vol 80, pp. 701-737, https://doi.org/10.1007/s11538-018-0396-4    
  32. Bitsouni, V., Trucu, D., Chaplain, M.A.J., and Eftimie, R. (2018) “Aggregation and travelling wave dynamics in a two-population model of cancer cells”, Mathematical Medicine and Biology: A Journal of the IMA, Vol 35, No 4, pp. 541-577, https://doi.org/10.1093/imammb/dqx019  
  33. Domschke, P., Trucu, D., Gerisch, A., and Chaplain, M. A. J. (2017), “Structured models of cell migration incorporating molecular binding processes, Journal of Mathematical Biology, Vol 75, pp. 1517–1561, https://doi.org/10.1007/s00285-017-1120-y  
  34. Peng, L., Trucu, D., Lin, P., Thompson, A., and Chaplain, M. A. J. (2017), “A multiscale mathematical model of tumour invasive growth”, Bulletin of Mathematical Biology, 79, pp. 389-429, https://doi.org/10.1007/s11538-016-0237-2   
  35. Trucu, D., Domschke, P., Gerisch, A., and Chaplain, M. A. J. (2016), “Multiscale computational modelling and analysis of cancer invasion“, Springer Lecture Notes in Mathematics: CIME Subseries, Springer International Publishing, Vol. 2167, pp. 275-320, https://doi.org/10.1007/978-3-319-42679-2_5
  36. Trucu, D., (2016), “Multiple scales modelling approaches to social interaction in crowd dynamics and crisis management. Comment on “Human behaviours in evacuation crowd dynamics: From modeling to“big data”toward crisis management” by Nicola Bellomo et al., Physics of Life Reviews, https://dx.doi.org/10.1016/j.plrev.2016.07.014   
  37. Kim, Y., Powathil, G., Kang, H., Trucu, D., Kim, H., Lawler, S., and Chaplain, M. A. J. (2015), “Strategies of eradicating glioma cells: A multi-scale mathematical model with miR-451-AMPK-mTOR control“, PLoS One, 10, No 1, https://dx.doi.org/10.1371/journal.pone.0114370
  38. Trucu, D., and Chaplain, M. A. J. (2014), “Multiscale Analysis and Modelling for Cancer Growth and Development“, Managing Complexity, Reducing Perplexity (eds. M. Delitala and G. Ajmone Marsan), Springer Proceedings in Mathematics & Statistics, Springer, Vol 67, pp.45-53, https://doi.org/10.1007/978-3-319-03759-2_5
  39. Domschke, P., Trucu, D., Gerisch, A., and Chaplain, M. A. J. (2014), “Mathematical modelling of cancer invasion: Implications of cell adhesion variability for tumour infiltrative growth patterns“, Journal of Theoretical Biology, Vol 361, pp. 41 – 60, https://doi.org/10.1016/j.jtbi.2014.07.010
  40. Trucu, D., Lin, P., Chaplain, M. A. J., and Wang, Y. (2013), “A Multiscale Moving Boundary Model Arising in Cancer Invasion“, Multiscale Modeling and Simulations: A SIAM Interdisciplinary Journal, Vol 11, No 1, pp. 309 – 335, https://doi.org/10.1137/110839011  
  41. Trucu, D., Chaplain, M. A. J., and Marciniak-Czochra, A. (2012), “Three-scale convergence for processes in heterogeneous media“, Applicable Analysis: An International Journal, Vol 91, No 7, pp. 1351 – 1373, https://doi.org/10.1080/00036811.2011.569498   
  42. Trucu, D., Ingham, D. B., and Lesnic, D. (2011),”Reconstruction of the space- and time-dependent blood perfusion coefficient in bio-heat transfer“, Heat Transfer Engineering, Vol.32, No 9, pp. 800 – 810, https://doi.org/10.1080/01457632.2011.525430
  43. Trucu, D., Ingham, D. B., and Lesnic, D. (2010), “Inverse Temperature-Dependent Perfusion Coefficient Reconstruction“, International Journal of Non-Linear Mechanics Vol 45, No 5, pp. 542 – 549, https://doi.org/10.1016/j.ijnonlinmec.2010.02.004
  44. Lesnic, D., and Trucu, D. (2010), “The identification of blood perfusion coefficient in bio-heat transfer“, Proceedings of the 3rd Inverse Problems, Design and Optimization (IPDO- 2010) Symposium, Joao Pessoa, Brazil, (eds. Z. E. Da Silva, H. R. B. Orlande, M. J. Colaco and G.S. Dulikravich) pp. 277 – 284
  45. Trucu, D., Ingham, D. B., and Lesnic, D. (2010), “Space-dependent perfusion coefficient identification in the transient bio-heat equation“, Journal of Engineering Mathematics Vol 67, pp. 307 – 315, https://doi.org/10.1007/s10665-009-9319-6
  46. Trucu, D., Ingham, D. B., and Lesnic, D. (2009), “An inverse coefficient identification problem for the bio-heat equation“, Inverse Problems in Science and Engineering, Vol 17, No 1, pp. 65 – 83, https://doi.org/10.1080/17415970802082880
  47. Trucu, D., Ingham, D. B., and Lesnic, D. (2008), “Inverse Space-Dependent Perfusion Coefficient Identification“, Journal of Physics: Conference Series Vol 135, 012098 (8pp), https://doi.org/10.1088/1742-6596/135/1/012098  
  48. Trucu, D., Ingham, D. B., and Lesnic, D. (2008), “Inverse Time-Dependent Perfusion Coefficient Identification“, Journal of Physics: Conference Series Vol 124, 012050 (28pp), https://doi.org/10.1088/1742-6596/124/1/012050
  49. Trucu, D., Ingham, D. B., and Lesnic, D. (2007), “Direct boundary element method for the transient bio-heat transfer equation“, Advances in Boundary Integral Methods – Proceedings of the Sixth UK Conference on Boundary Integral Methods, (ed. J.Trevelyan), Univ. Durham, Ch.24, pp. 223-232, ISBN 978-0-9535558-3-3
  50. Trucu, D., Ingham, D. B., and Lesnic, D. (2007), “The inverse coefficient identification problem in bio-heat transient flow equation”, Inverse Problems, Design and Optimization (IPDO-2007), (eds. G.S. Dulikravich, M.J. Colaco, H.R.B. Orlande and M. Tanaka), Vol. I, pp. 214-221, ISBN 978-1-59916-279-9
  1. Eftimie, R., and Trucu, D., “Modelling and Computational Approaches for Multi-scale Phenomena in Cancer Research: From Cancer Evolution to Cancer Treatment”, World Scientific, Singapore, 312 p, 2024 (December 2024)  https://doi.org/10.1142/q0424, ISBN: 978-1-80061-437-6 (hardcover)
  2. Ciarleta, P., Hillen, T., Othmer, H., Preziosi, P., and Trucu, D., “Mathematical Models and Methods for Living Systems: Levico Terme, Italy 2014 – Lecture Notes in Mathematics 2167 – CIME Foundation Subseries”, Springer, 1st ed., 324p, 2016 (10 November 2016), https://doi.org/10.1007/978-3-319-42679-2 , ISBN 978-3-319-42678-5
  1. Trucu, D., “Inverse Problems for Blood Perfusion Identification”, PhD Thesis, University of Leeds, June 2009
  1. Trucu, D., Thompson, A., and Chaplain, M. A. J. (2012), “Multiscale computational modeling of breast cancer invasion: Towards a predictive patient-based tool“, Cancer Research, Vol 72, Issue 24, Supplement 3, https://doi.org/10.1158/0008-5472.SABCS12-P1-05-14
  1. Tao, Z., Eftimie, R., and Trucu, D. (2025), “Novel perspectives on cross-adhesion and cross-diffusion in cancer development” (in preparation – to be submitted by the end of May 2025 in Bulletin of Mathematical Biology)
  2. Tao, Z., Domschke, P., Gerisch, A., and Trucu, D. (2025), “Computational modelling and analysis for a heterotypic tumour invasion in a heterogeneous environment: exploring the interplay between cross-adhesion and cross-diffusion in cancer development” (in preparation – to be submitted by the end of May 2025 in Frontiers in Applied Mathematics and Statistics)
  3. Almuallem, N. A., Trucu, D., and Eftimie, R. (2025), “Modelling macrophages’ role on the dynamics of oncolytic viruses: the effect of delayed viral replication”, (in preparation)
  4. T. Carraro, T., Kemp, F., Wetterauer, S., Trucu, D. (2025), Adaptive cut-cells for a multiscale model of cancer invasion”, (in preparation)
  5. Macarie, A., Süveges, S., Seele., D., Eftimie, R., and Trucu, D. (2025), “Multiscale moving boundary modelling of cancer invasion within a fibrous environment: exploring the roles of peritumoural durotaxis and go-or-grow hypothesis in tumour progression”, (in preparation)